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SYMMETRIC NONLINEAR DUAL PROGRAMS1

I. Introduction

Most known results on duality in mathematical programming are very

closely related to the conditions under which

(M) max min K(x, y) =min max K(x, y)
ycY xcX xeX yYC

where the sets XC.Rn ,Y CRm and the function K: X xY -R As an

example, the duality of the two linear programming problems:

i), x > 0 Ax >b, mmncx
(1H) 'y 0, yA< c, nax yb

is expressed by the statement (M) with X R + Y R +~ a nd

K(x, y) = cx + yb - yAx . The statement (M), or the equivalent saddle-point

statement, avoids, among other things, one of the apparent features of many

duality formulations, iLe.,. asymmetry.'UI, for instance, the primal& problem

io tak~en tobe

(Z) x90 R, g.(x)< 0 (i = l.mmin go(x)

where got, g1 . .. Pg~ are c onvex- differentiable functions of x eRn, then

a formal dual is

m
(3) x e Rn u> (1is. z.m), g"(z) - ujgj(x1 30,

max [g0 (x) - g~z

A'



where gj(x) is the gradient of g, at x. Apparently, the dual problem (3)

is not, in general, of the same form as the primal problem (2). Furthermore,

while the objective function in (2) is assumed convex, the objective function

in (3) may be neither convex nor concave, indicating again a lack of symmetry.

In [3] one of the co-authors of this note discussed the situation when in (M)

X R Y R + and K is given by:

(4) K(x,y) = f(x) + g(y) " yAx

with f, g convex-homogeneous and f, g, A further restricted by a "feasibility"
condition. Results of Fenchel [5] (which may also be found in (7, p. 227])

pertain to (M) with K as in (4) with f, g convex. and. X, Y closed convex

sets. The main result of this paper is what we believe to be a new duality

formulation. It can also be very profitably used in investigating general con-

ditions on X, Y and K under which (M) holds.

Additional or related efforts in the area of duality are noted in the

bibliography, they include Wolfe's duality theorem [11. Thin. 2] which states

that if the constraints in (2) satisfy the Kuhn-Tucker qualification [8, p. 483]

and if x0 solves (2) then there is a u = (ul,. • ) such that the pair

(x 0 , u) solve (3' With the exception of special cases, such as quadratic

programming, the converse of Wolfe's theorem, as treated independently by

Huard [6] and Mangasarian [9], requires stronger assumptions. In this

paper we present a pair of symmetric dual programming problems related

to the statement (M) . In a way, this represents an extension of results

obtained by one of this paper's co-authors in [1]. In section 2 we connect the

resuts in [1] with the duality theorem which it established in soectia 3.
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'The work of Dorn (2], on quadratic programming exemplifies the fact

that the formulation of section 1 for primal and dual problems is asymmetric.

Dorn considers the primal problem (the sign of his b has been chauged):

I TT()Ax +b >0 x >0 min( X CZ + p X)

and its dual (with a slight change in notation)

(6) -ATy +Cx + p 0, y 0 ma( xTx bTy

where C is a symmetric positive semi-definite matrix. It is shown in [1]

that there is a pair of naturally symmetric problems related by duality. They

are:

PRIMAL PROBLEM

I T I T TMinimize 1Z y Dy + 7x Cx +p X

()subject to Dy + Ax +b>O0

xC nm

and
DUAL PROBLEM

Maximize I yT -y 1 ~ b-

T(8) subject to -A y+ Cx + p

x + yeR +

where both C and D are symmetric positive semi-definite matrices. In

particular, if C and D are identically zero, then (7) &n4 (8) reduce &,imply

to symmetric dual linear programs.

.3.



U. The General Symmetric Duality Statement

Lot K(x, y) be a real-valued and twice continuously differentiable

n+n r; M.function defined on an open subset of R =R x R of the form U x V

where U is open in Rn and V in open in Rm Wre define KI(x. y) to be

ten-component column vector which is the gradient of K with respect to

the x-variable at the point (x, y) ;similarly, K2(x, y) is the rn-component

column vector representing the gradient of K with re-spect to y at the

point (x, y) 9 U x V . We introduce a double subscript~notýLtion for the

matrices of second partials. Thus,

K1 (x y) y)x y) 8 n~_)]T

K2(x, y) O= I 'x21X

K11x~) OK( 8y) ; Ky)( OK(

K2 ,(x. Y) SK I 2 (xy

PRIA I(PI) DUALx~ (P)X Y

Mm [K~x.y) K2(x.y)] Max K,(x, y),-, K(x )x, ~x y) x.. y!,

Minbec to:. y)( y K,7,-y) Maxubet o K 1(x, y) Ix 0)

X(n m Inm

+ + ~R +
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S as a special case, with K defined by

(10) K(x, y) 1 TCx + p x yT - bTy - yTAx

the primal and dual problems above reduce to the quadratic case (7) and (8).

The general strict case will consist of the two problems (P) and

(P*) with K having the following properties:

(i) K is real valued on the cartesian pioduct U x V (briefly,

K: U x V R1) where U and V are open subsets of Rn

and Rm respectively, such that R+ ,m+ C V

(ii) K is twice continuously differentiable on U x V

n
(iii) for each fixed x c R, K is strictly concave in y+

(iv) for each fixed y c R1 , K is strictly convex in x

Observe that if we omit "strictly" in conditions (iii) and (iv) then with K as

given by (10) for the quadratic case, all the other conditions are satisfied.

The general strict case and the quadratic case are, of course, not mutually

exclusive; specifically, the quadratic case becomes an instance of the other

providing C and D are both positive definite (hence, nonsingular).

We find it convenient to use a single symbol for the objective

functions in (P) and (P ):

(x,y) = .K(xy) - yTK2(xy

((xy) = K(x,y) -xTK 1 (xy)

Also,, we denote by P the set of all pairs (x, y). satisfying the constraints of

(P) , i.e., x e R+, y 4E R+, K2(x,y) < 0 ; similarly, P denotes the set

n m•!?of anl lair 9 (x.y) satisfying x C I+,,y e R+ ,and Kl(X,y) • 0.
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_ __• In the next section we state precisely what the duality rolatlon

=__ between (P) and (In*) is. At thi, s point, it should be remarked that neither

of the problems (in) and (P*) need be a convex programming problem,

/I For example, in (P) the objective or the constraint functions may fail to be

convex, and analogously in (P*) . Furthermore, it should be noted that the

duality requirements defined in the next section are of the type which will

not hold unless some regularity conditions are imposed on the •unctton

I•x, y) . In view of the possible absence of convexity (or concavity), the

Kuhn-Tucker theorem [ 8, p. 84 ] on necessary conditions of optimality

seems appropriate to obtain the desired duality relations. Thus, it appears

that the constraint qualification (see Appendix) is a suitable regularity

•ssumption. Indeed, this assumption is sufficient.

-6-
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,M. Dua"Ity

We shall say that a relation of duality holds between (P) and (P)

providing that the following two conditions hold:

() sup nix. Y) < mif (x" Y)

and

(b) (P) is solvable if, and only if, (P* is solvable, in which case

max 17 min J
P P

(Solvable means ,has an optimal solution. ")

REMARKM the further condition:

(c) If exactly one of the programs is feasible then its objective

function is unbounded in the direction of optimization;

(Feasible means that there exist variables satisfying its constraints)

which holds for dual quadratic or linear programs (i. e., in the quadratic case,

see (1, theorem 3 1need not hold in the strict case.%C This may be seen from

the example: K(x y) = x-e~ in this case (,P" is trivially feasible while

(P) is infeasible; however n(x. y) aex xex which is bounded above

for (x, y) > 0 .We shall show that, in the strict. casera relation of duality

holds between (P) and (P*) providing they satisfy a constraint qualification;

we begin by showing (a):

THEOREM 1: sup? n inf

PP

4.e.. in the general strict case.

-7-



S-,..: Using the convention

sup n Go if P is emptyP

infi +0 if P is empty

P

we need only show that if (x, y)cP and (y,-)4rP then L ) (x,y).

By definition of P and P* we have

K (x, y)<o, x>0, y>0
(12)

Kj~x ,)> 0, >0, 7>0.

Thus:

(13) TK2x, y) < 0, xTKI(i,7) _ 0

and

14) yTK2(x, y) - xTK ,(x, y) < 0 .

Since K is convex-concave and differentiable we have (see [8] Vol. 1, p. 405,

No, vii)

xTKii) - TTK (x,y) < K(x,y)- K(z,7)
(15)

YTK 2 (X•lY) - TK2 (x, y) < K(x.y) -K(x, y)

Adding the two inequalities of (15), rearranging terms, and using (14), we

obtain:
, Ir. y-) - K(x, y) x •T K].(,y) _

S< Klx, y)l- yT K?(x, y) + T K ~x, lT K 1(X, Y).<

T
< K(xY)-y K 2 (x. A Vx, y)

• ~-.8-
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completing the proof of Theorem 1.

NOTE: The proof of Theorem I does not require the "strictness" assumption

of (tii), (iv); only convexity-concavity and differentiability are essential.

From Theorem 1 follows the obvious remark that if (x0zy 0 ) P ,

(xý, c P* have the property that 9(x 0 , y0 ) < T(x 0,0) then (x 0 ,yO) and

(' 0 9•) are optimal solutions of P and P* respectively. This will be used

in proving:

THEOREM 2 (Duality Theorem): Assume that P and P* satisfy the Kuhn-

Tucker constraint qualification. Then (P) io solvable if, and only if, (P )

is solvable, in which case

•ax n min a

P p

Proof: We shall'show that if (-,7) solves (P*) then (i,•) also solves

(P) and C('x,f) s i(',y-) (the proof of the converse is analogous). Consider

the function:

0%, y, u)= K(x, y) x TK(X, y) + uTKI(x, y)

By the Kuhn-Tucker optimality conditions [ 8, theorem I], and since (i,7)

solves (P ) , there exists a vector U e R satisfying the following:

(16) * 2(R,,iu-) K,1(i,)f)(u - I) < 0

(17) _2,•u-) = K. (R',y-) + K2,I (R.-y-) ('u- R-)< 0

(18) V'3 (Cy,) = K(i,y-) > 0

[ (Kl9) T )" + -T =

.0



(20) ;KI(iV)=

(21) > ' -X i>0' >

'it then follows that:

(22) T ((-) 0

From (16) and (2 1) we get:

(24) j) (a-Y(- 0

and thus:

(25) (ix 1 (j)( )< 0

But because K is strictly convex in x, it follows that Kg is a Positive

definite matrix, thus i-j=0, I. e.,.

(26)u x

It then follows from (17) and (26) that the pair to~)I feasible for (P).

From (26) and (19) it follows that

(27) = 0,

while from (26) and (20) we obtain:

(,ZS) K K1(i, ) =0.

We conclude that (iqv1 and Irij x iii.).Q E. D.



We state two bmediate €ortrie..t

COROLLARY 1:

If either program (P) or (P is solvable "hea there isa J!QtL solution

(L.e., a pair solving both programs).

Proof: It is clear from the proof of Theorem Z that in the general strict

case the optimal solutions of (P) and (P*) are the same. For the quadratic

case see [ 1, Theorem •].

COROLLARY 2:,

If (ij-) is a joint solution of (P) and (P*)then -TIKz(xY) T0 = xTKl(;,•-)

Proof: For the general strict case note Equations (27) and (Z); for the

quadratic case see the remark after Theorem 4 in [1].

Al
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APPENDIX

Th. VKuhn-Tucker Constraint Qualification

Suppose F(x) [fl(x),f 2 (x),.., fr(x)I T where each 'i an

everywhere differentiable function of x > 0 . Let x0 be such a point. Taking

the partial derivatives of the functions f, at x°, we define

which is regarded as an m x n matrix, the it row of which to the gradient

(transposed) of the function f evaluated at x

Let x0 be a boundary point of the (constraint) set C - (xCR+ IF(x) > 0).

Separate the inequalities F(x°) > 0, Ix° > 0 (where I is the m x n identity

matrix) into

l(x°) =0 , x0  0 ,) > 0 , Ix > 0

0That is, F1 consists of the subset of function6 f in+ F which vanish at x

and F 2 consists of those which are positive at xI. 1 and 12 are diagonal

matrices having ones and zeros as diagonal entries. In particular, I1 has
iI

ones in those rows where the components of x0 are zero, and has zeros on

the rest of the diagonal. I hasi ones in the rows where x° has positive

components and has zeros on the remainder of its diagonal.

The Maximum Problem of Kuhn and Tucker [8!, p. 483] is: Maximize

a differentiable function g(x) constrained by F(x) > 0, x > 0. Further

restrictions on the constraint set are required in order to make certain con-

clusions about an optimal solution of the maximum problem. Tb"e restrictions

are embodied in the constainat qualification which we mow &Wet.

- 12-



For every boundary point xO of Cany vector di~fheoutial 4x

satisfying the homogeneous linear inequalities

P dx > 0 I1 dx> 0

is, tangent to a differentiable arc contained in. C That is, to every dx

satisfying the above inequalities, there corresponds an arc x = a(0)

0 < 0< I, with xo a($C) 'Such that (da/dO] X )x fo ow eu positive

scalar ). .

N~
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